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Measurement: Personality

Predicting Personality Traits:
Language vs. Friends
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Measurement: Personality

Test-Retest Reliability
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Social Media

1. Measurement

To what extent can we replace traditional
survey-based methods?

2. Data-driven discovery

Can we discovery new links with outcomes?
What is driving a trend?

Applications

Largest dataset(s) of everyday
human behavior and conerns.




Data-driven Social Science: Extraversion
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Data-driven Social Science: Introversion
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Social Media Sources

microblogging social interaction messaging
Twitter Facebook Text Messages
Weibo Renren SnapChat
WeChat
mostly public somewhat private private
big bigger biggest
Other social media Search
Instagram Google
YouTube Yahoo
Yelp Baidu
Pinterest Bing
Tumblr

Reddit
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Social Media Data Types:
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* random stream (1% daily = ~2 to 3.5m)
* filter stream (1%; not random sample)
* search API (180 queries per 15 minutes)



Acquiring Social Media

Twitter

— Application Programming Interfaces (APIs)

* random stream (1% daily = ~2 to 3.5m)
* filter stream (1%; not random sample)
* search API (180 queries per 15 minutes)

- More data provided by third parties
(Datasift, Gnip, ...)



Acquiring Social Media

JSON encoding
{

"coordinates": None,
"created at": "Wed Jan 29 22:58:50 +0000 2014",
"favorite count": 19, |
"favorited": False, P
a chandlermbing :

"geo": None,

"id": 428663556889145344, Wow, where did January go? Was |
in Tulsa or Yemen? Or Vermont?

£xv +% Follow

"lang": "en",

"place": None,

"retweet count": 14,

"retweeted": False,

"text": "Wow, where did January go? Was I 1in
Tulsa or Yemen? Or Vermont?",

14 19



Acquiring Social Media

Facebook
o Graph API

o Limited public data

o Consent participants to share private data
through Facebook App.



Analysis / Methodology
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Analysis / Methodology

Features

words and phrases: 1 to 3 word sequences more likely
to occur together than chance.

® \WVords identified from text via social-media aware
tokenization.

® usually restricted to those used more than a few times
® e.g.'day', 'the beautiful day', 'Mexico City', etc...
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to occur together than chance.

® \WNords identified from text via social-media aware
tokenization.

® usually restricted to those used more than a few times
® e.g.'day', 'the beautiful day', 'Mexico City', etc...

topics: Clusters of semantically-related Words found via

latent Dirichlet-allocation @ sa pecially o o ”
fu t
e.g. laughinginside bestestmjss
|maofunny bestiesfamily
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Method:Data-driven language analysis

Features

words and phrases: 1 to 3 word sequences more likely
to occur together than chance.

topics: Clusters of semantically-related words found via
latent Dirichlet allocation

lexica: Manually-created clusters of words
e.g. positive emotion: happy, joyous, like, etc...
negative emotion: sad, hate, terrible, etc...



Analysis / Methodology

automatic content analysis

closed-vocabulary open-vocabulary
manual manual crowdsourced derived _ words &
coding dictionaries dictionaries dictionaries topics phrases
hand-driven data-driven

open-vocabulary : Not restricted to predefined lists of features.



Analysis / Methodology
Example: Sentiment Analysis

automatic content analysis

closed-vocabulary open-vocabulary
manual crowdsourced derived _ words &
dictionaries dictionaries dictionaries topics phrases
hand-driven data-driven

Thumbs up... (Pang and Lee, 2004)

+ / - Emotion from LIWC
(Pennebaker et al., 2001) NRC Canada

(Mohammad et al., 2013



Analysis / Methodology

automatic content analysis

closed-vocabulary open-vocabulary
manual crowdsourced derived _ words &
dictionaries dictionaries dictionaries topics phrases
hand-driven data-driven

All require validation in new domain.
(e.g., new platform, time-frame, or level of analysis)



Analysis / Methodology

Prediction
How to fit a single model on lots of language variables?
(e.g. 25,000 words and phrases)

Methods from Machine Learning:
e discrete outcomes: support vector machines (SVM)
e continuous outcomes: ridge regression
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® sparseness: most words do not occur very often

e high co-variance: e.g. people that say “soccer”
often are also more likely to say “goal”



Analysis / Methodology

Prediction

Issues with words as variables:

® sparseness: most words do not occur very often

® high co-variance: e.g. people that say “statistics”
often are also more likely to say “variable”

Solutions:
e |1 penalized fit (lasso regression)
e Use principal components analysis before fit



Analysis / Methodology

Volunteer or Public Data

social media
messages

linguistic
feature
extraction

a) words and

b) topics

personality age
gender health
well-being county

correlation
or
model
learning

ulll

visualization or
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Some Available Resources

MALLET: Machine Learning Language Toolkit
Good for topic modeling
http://mallet.cs.umass.edu/

GUI: http://code.google.com/p/topic-modeling-tool/

Lightside: Point and Click Machine Learning
http://ankara.lti.cs.cmu.edu/side/download.html

WWBP Resources

wwbp.org/data.html

Coming this January:

“LexHub: Language Analysis X social science”
email to get on list: hansens@seas.upenn.edu


http://mallet.cs.umass.edu/
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Introduction
Background on Social Media Data

Examples

- Heart Disease Mortality
- HIV Prevalence

- Life Satisfaction

- Flu Tracking

Challenges

Summary



Example: Community Heart Disease Mortality

Eichstaedt, Schwartz, Park, Kern, ... Ungar, Seligman. (2014; in press)



Example: Community Heart Disease Mortality

Twitter Dataset Studied:

10% of tweets from June 2009 to March 2010
(826 million tweets)

United States CDC data:

2009-2011 Atherosclerotic Heart Disease Mortality
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CDC-reported ACHD Mortality

Percentile of ACHD Mortality




Example: Community Heart Disease Mortality

CDC-reported ACHD Mortality i Twitter-predicted ACHD Mortality

Percentile of ACHD Mortality




Example: Community Heart Disease Mortality
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of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Only Twitter —
| | ]
All Predictors (except Twitter)

Income and Education ]

Smoking
Diabetes
Hypertension
Obesity
%Black
“oFemale
YoMarried

YoHispanic
| | | |
] T T T

0 0.1 0.2 0.2 0.4

Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)

kK




Example: Community Heart Disease Mortality

Perfomance of Twitter-Based and Traditional Risk Factor-Based Regression Models
of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Only Twitter —
| | ]
All Predictors (except Twitter)

Income and Education ]

Smoking
Diabetes
Hypertension

Obesity

%aBlack -

»eFemale

%aMarri ed

YoHispanic

0 0.1 0.2 0.2 0.4

Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)

kK




Example: Community Heart Disease Mortality

Perfomance of Twitter-Based and Traditional Risk Factor-Based Regression Models
of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Only Twitter —
| | ]
All Predictors (except Twitter)

Income and Educati on ]

Smoking
Diabetes
Hypertension
Obesity
%Black —
“oFemale

%aMarri ed

YoHispanic

0 0.1 0.2 0.2 0.4

Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)

kK




Example: Community Heart Disease Mortality

Perfomance of Twitter-Based and Traditional Risk Factor-Based Regression Models
of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Only Twitter —
| | ]
All Predictors (except Twitter)

Income and Educati on ]

Smoking
Diabetes
Hypertension
Obesity
%Black —
“oFemale

%aMarri ed

YoHispanic

0 0.1 0.2 0.2 0.4

Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)

kK




Example: Community Heart Disease Mortality

Perfomance of Twitter-Based and Traditional Risk Factor-Based Regression Models
of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Only Twitter

All Predictors (except Twitter)

Income and Education
Smoking

Diabetes
Hypertension

Obesity

%aBlack

“oFemale

%aMarri ed

YoHispanic

0 0.1 0.2 0.2 0.4

Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)

kK




Example: Community Heart Disease Mortality

Perfomance of Twitter-Based and Traditional Risk Factor-Based Regression Models
of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Only Twitter —
| | 1+
All Predictors (except Twitter)

Income and Educati on ]

Smoking
Diabetes
Hypertension
Obesity
%Black —
“oFemale

%aMarri ed

YoHispanic

0 0.1 0.2 0.2 0.4

Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)

kK




Language positively correlated with
US-county-level Heart Disease
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Language negatively correlated with
US-county-level Heart Disease
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Example: County Life Satisfaction
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Example: County Life Satisfaction
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lexica by county ) ) i
[LIWC, PERMA dictionary (WEB)) -.*' train hfe SaffoaCfIDn
(L1 penalized regression: “tha Lassa’) de EI
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(based on 2000 social media LDA topics ) #
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& (demographics, socio-aconamic)

life satisfaction
by county

(as surveyed by Gallup)
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Example: County Life Satisfaction
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Example: County HIV Prevalence
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Example: County HIV Prevalence
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Example: County HIV Prevalence

HIV prevalence is higher in counties with less
future tense In...

all 1375 qualifying counties
(Beta =-0.48, p <.001)

top 200 most populated counties
(Beta = -0.27, p <.001)



Example: Flu Trends

National
Minimal
Jul Aug Sep

States | Cities (Experimental)



Google Flu Trends
FEVER PEAKS

A comparison of three different methods of
measuring the proportion of the US population
with an influenza-like illness.

namre International weekly journal of scienece

- Google Flu Trends
= CDC data
Flu Near You #

Google's algorithms
overestimated peak
flu levels this year

S

When Google got flu wrong

US outbreak foxes a leading web-based method for tracking se

Declan Butler

13 February 2013

Estimated 9% of US population with influenza-like illness

] por | ™, Rights & Permissions




Health Tweets

http://www.healthtweets.org/
(Mark Dredze and Michael Paul; Johns Hopkins University)

narrows in on health-related tweets


http://www.healthtweets.org/

Overview

Introduction
Background on Social Media Data

Examples

- Heart Disease Mortality
- HIV Prevalence

- Life Satisfaction

- Flu Tracking

Challenges

Summary
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Challenges
* Ethical / Privacy

* Technical

* Methodological



Challenges

America's Most Expensive The Future Of Marketing
aemme Z1P Codes iy Combines Big Data With
A i .7 Human Intuition

E Oi'l-‘ e S - New Posts '’ Most Popular Video 2 Free Issues of Forbes

FORBES 400

America's Richest People

Log in Sign up

6/28/2014 @ 2:00PM | 181,181 views

Facebook Manipulated 689,003
Users' Emotions For Science

Kashmir Hill + Comment Now  + Follow Comments
Forbes Staff

~




Challenges
* Ethical / Privacy

— Public Awareness / Participant Consent
* Technical

* Methodological
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Challenges

* Ethical / Privacy

— Public Awareness / Participant Consent
* Technical

- Data Storage and Analysis Infrastructure
- Evolving APls
* Methodological

- Word meaning / domains

— Correlation versus Causation
- Sample Bias

- Self-presentation Bias



Issues attributed to missclassification
Facebook status update.

category label | frequency
Lexical Ambiguity %ﬁff;@g ;2
Signal Negation Strict T)ng ?Eglgl : 66
Other Stemcl)st;ii 254




Challenges

* Ethical / Privacy

— Public Awareness / Participant Consent
* Technical

- Data Storage and Analysis Infrastructure
- Evolving APls
* Methodological

- Word meaning / domains

— Correlation versus Causation
- Sample Bias

- Self-presentation Bias



Predicting based on a different sample

(
Phone
@



Predicting based on a different sample




Predicting based on a different sample




Representative Sample?




Representative Sample?

= )
=Sy &

Surveyed well-being
from
representative sample.

jﬁ\\ |
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Representative Sample?

Surveyed well-being
----- #om - . .
representative sample.

&




Representative Sample?

%

Surveyed well-being




Representative Sample?

* Alternaitve: Post-stratification

- Demographics are one of the most
accurately predicted from language

* gender 92% accuracy
* age 0.86 correlation



Challenges

* Ethical / Privacy

— Public Awareness / Participant Consent
* Technical

- Data Storage and Analysis Infrastructure
- Evolving APls
* Methodological

- Word meaning / domains

— Correlation versus Causation
- Sample Bias

- Self-presentation Bias



Challenges

« Ethical / Privacy

- Public Awareness / Participant Consent
 Technical
- Data Storage and Analysis Infrastructure
- Evolving APls
 Methodological

¢ vallaate




writing size

sample size / populations

(s ling 2004; 2010)

self-descriptive variables

Why Social Media and Language?

unobtrusive longitudinal / look back in time

often personal /
potential for real-time everyday concerns



Thank You! Questions?

hansens@seas.upenn.edu

_ Traditional
Big Official
Data Statistics

&'Penniworld Well-Being Project |wwbp.org



Thank You! Questions?

hansens@seas.upenn.edu

Big Data for
Official
Statistics

& Penn iworld Well-Being Project |wwbp.org



APPENDIX



Method: County-Mapping

Rule-Based Mapping

94% map to
human-judged
intended city, state

contains
ountry?
o

contains
state?

Tweet

/ocaﬁon string
Aeo-mordmafe%

\

tokenize

map to most-
probable county

contains
city with > 90%
chance of being
in one state?

not mapped

if tweet has coordinates (< 2% of tweets), then map directly to county

94% accurate map to human-judged intended city, state pair.



Distributed Computing

e approximately 1 billion tweets
o Too much for single computer system

e Utilize map-reduce in a “Hadoop” style cluster:

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 ——wm Bear, 2
Deer,1 ———m» Bear, 1
Deer Bear River ———w» Bear, 1

River, 1
/ Car, 1
Car,1 —» Car,3 | ——» Bear2

Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——w» CarCarRiver ——w Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2

Deer,1 ———wm Deer,2 ————w

Deer, 1
Deer, 1
Deer Car Bear ——w» Car, 1
Bear, 1 River, 1 ———» River, 2

River, 1

image: http://xiaochongzhang.me



Well-Being and Policy

OECD Guidelines
on Measuring
Subjective
Well-being

=> Life Satisfaction
(across domains)

OECD
Better Life

0» OECD \_[nitiative




What topics matter for all
COunties (that we have data for) il‘l the United

classtrainer,
training

(3
1

intense

vistabasic potty

Life Satisfaction
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1

certified
personal

M Richest quartile

/ 3rd
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B -1

County Topic Use

2

3

Life Satisfaction

—
L

=

=l

Evidence for moderation
* A moderator alters the strength or direction of a relationship
* Question of external validity - how universal is the effect?

County Topic Use

Daivd Kenny - Moderator Variables: Introduction,

http://davidikﬁFny.net/cm/modegation.htm

at topics ma

| cancer : funn . :
donatcdmnneyfund raise 24 Umgw;at[:hm 4’
: . - heiz hilarious
benefit donations Imaog = = ok
Supe:%rtit isecrelief lolscoofUnny
ar y Richest quartile E: Richest quartile
B
2nd ‘;; and
N
Jrd 04
Poorest quartile Poorest guartile
5 & b 1 3 ] L T 3 ]

County Topic Use

tter for the

poorest 25% of counties In



http://davidakenny.net/cm/moderation.htm
http://davidakenny.net/cm/moderation.htm

Individual Well-Being

tonight tomorrow
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Individual Well-Being: message to user-level

tonight tomorrow

wooohooo
super pumped

stoked S0000 upcoming
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excite
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Correlations between Personality Ratings

Self-Language Self-Friend  Friend-Language
N = 5,000 745 745
Openness 43 25 .30
Conscientiousness . ¥} 30 .20
Extraversion 42 S 24
Agreeableness 34 30 24

Neuroticism 3 .34 .20




Extraversion

Criterion measures N Qx Language
Number of friends 711 23 23
Number of doctor visits 736 05 10
Number of sick days 733 -0l .03
Politically liberal 756 07 .03
Fair-mindedness 864 24 10
Self-disclosure 864 A5 14
Self-monitoring 927 .36 A5
Satisfaction with life 1114 L 13
Barratt Impulsiveness Scale 549
Attention -.08 -0l
Cognitive Instability -.02 .00
Motor 30 8
Perseverance -0l .05
Self Control .00 06
Cognitive Complexity 05 .09

Column-vector correlations




Openness Conscientiousness  Extraversion Agreeableness Neuroticism

Criterion measures N Qx Language Qx  language  Qx Llanguage  QOx language  Qx Language
Number of friends 711 .05 -05 -0l -15 23 22 04 .03 -13 -09
Number of doctor visits 736 .00 -0l -05 A2 .05 10 02 .03 14 .08
Number of sick days 733 0l 07 -07 -01 -01 .03 -02 02 22 A1
Politically liberal 756 32 22 -13 -.14 07 .03 -0l -19 .05 .08
Fair-mindedness 864 A7 03 33 23 24 10 .28 A7 -.35 -19
Self-disclosure 864 -02 -07 37 29 A5 A4 37 28 -.28 -.16
Self-monitoring 927 18 .08 -03 -.09 36 A5 -03 -0l -.10 -.05
Satisfaction with life 1114 .05 -03 29 A9 24 A3 24 21 -45 -.19
Barratt Impulsiveness Scale 549
Attention -.08 .03 -42 -15 -.08 -01 -.18 -17 3l A3
Cognitive Instability 24 A4 -22 -.18 -02 .00 -15 - 17 16 .09
Motor 09 -03 -17 -.02 30 5 .06 -.07 -.04 -.02
Perseverance 01 00 .00 0l -0l 05 - 11 -.02 09 -.04
Self Control -.04 04 -47 -.12 .00 06 -09 -10 24 .07
Cognitive Complexity -03 -.04 -23 -.03 05 09 -0l -07 10 .05

Column-vector correlations T4 82 83 .89 .95




Representative Sample?

“Fit unrepresentative sample to representative sample results (|e |mpI|C|tIy

maps unrepresentative sample to representative)

“In the end we are validating against representative data.



Individual Traits in Facebook
MyPersonality Dataset

® Facebook application to take “Big-5" personality survey.
® Approximately 75,000 users of the app:

o shared their status updates for research

o wrote at least 1,000 words

o share their age and gender

facebook.




Community Well-Being Through Twitter

CENTERS FOR DISEASE
CONTROL AND PREVENTION




Community Well-Being through Twitter

Twitter

> 150 million active monthly users
> 350 million messages a day

often list a location or geo-coordinates



prm "',,
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e




You Are What You Tweet
\\,
DN ﬂw

language
analysis




Example JSON - Tweet

"coordinates": None,

noregted ath: "Wed Jah 29 22:58:50 +6006 20814,

"favorite count": 19,

"favorited": False, ]

"geo": None, 533 Chandler M.-Bing v <8 Follow

"id": 428663556889145344, Wow, where did January go? Was |

" lang" - "an" , in Tulsa or Yemen? Or Vermont?

"place": None, e *Uﬂim(mﬁﬁz

"retweet count": 14, L=

"retweeted": False,

"text": "Wow, where did January go? Was I in Tulsa
or Yemen? Or Vermont?",



° REST APIs
o Twitter App building (e.g. smartphone apps)
o  Search API
e  Streaming APIs
o  Firehose
o public random sample
o  “user” and “site” streams

https://dev.twitter.com/docs



https://dev.twitter.com/docs

Sample Stream

o 1 % of all public tweets
® real time

e useful for representative language sample
o less than 40% of tweets are in English
o can be useful for frequencies of terms looked at



Search Stream

e Specific to what you're looking for
® same content as the web search
https://twitter.com/search?q=ocbama

e parameters include
o Recent vs Top tweets
Geolocalization
Language filter (Twitter’s algorithm is “best effort”)
time ranges (limited)
more:
https://dev.twitter.com/docs/api/1.1/get/search/tweets

O
O
O
O



https://twitter.com/search?q=obama
https://dev.twitter.com/docs/api/1.1/get/search/tweets

Community Heart Disease through Twitter

Method: Prediction

® [asso, L1 penalized, regression
e Controls:
o demographics: age, gender, ethnicity
O socio-economic status: income, education

.-"f

lexica by county " Y ] i
' life satisfaction

train

L1 penalzed regression: “the Lassa™)

topics by county /l;* 4

(based on 2000 social media LDA topics ) F3

F 4
e controls

& (demagraphics, socio-economic)

[LIWC, PERMA dictionary (WBJ) - {
[

model

&

life satisfaction
by county

(as surveyed by Gallup)

Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Lucas, R. E., Agrawal, M.,
Park, G. J., Lakshmikanth, S. K., Jha, S., Seligman, M. E. P, & Ungar, L. H. (2013).
Characterizing Geographic Variation in Well-Being using Tweets. /n Proceedings of the
Seventh International AAAI Conference on Weblogs and Social Media (ICWSM). Boston,
MA.




Search Stream

e Specific to what you're looking for
® same content as the web search
https://twitter.com/search?q=ocbama

e parameters include
o Recent vs Top tweets
Geolocalization
Language filter (Twitter’s algorithm is “best effort”)
time ranges (limited)
more:
https://dev.twitter.com/docs/api/1.1/get/search/tweets

O
O
O
O



https://twitter.com/search?q=obama
https://dev.twitter.com/docs/api/1.1/get/search/tweets

o Twitter uses OAuth2 for authentication
e Not a “username, password” authentication
e Need a “Twitter App” (and a Twitter account)

O

O

O

Anyone can create a blank app

Go to https://apps.twitter.com/app/new
Generate API key, API secret, access token &
access secret on this page:

https://apps.twitter.com/app/ YOUR _APP_ID/keys


https://apps.twitter.com/app/new

text of the tweet Find a complete list of fields at:
unique Twitter id https://dev.twitter.com/docs/platform-objects/tweets &
created date & time https://dev.twitter.com/docs/platform-objects/users
replies:

o userid & tweet id of tweet replied to
retweets:

o Tweet JSON of the original tweet

favorited & retweeted counts
entities

@)

expanded links, hashtags, media & user mentions

user info:

(@)

(@)
(@)
(@)

unique Twitter id

screen name, handle, location, description Il Some fields are optional !!

nb tweets, favourites, followers
profile picture & background information

Example Tweet JSON: https://gist.github.com/gnip/764239


https://gist.github.com/gnip/764239
https://dev.twitter.com/docs/platform-objects/tweets
https://dev.twitter.com/docs/platform-objects/users

Limitations of Twitter API

Search:

Sample Stream:

only 1 % of all tweets

terms that aren’t frequent enough
might not even appear in your
dataset

180 “queries” limit in every 15
minute window

each search query can only
contain 10 terms



o T ARIs
o Bfaph APl .
e Third APIAP where the
R
e Third party APls

o Public Feed API
o Keywords Insights API

8 35 e ATTEITY el

Relevance

livefyre %= Q




e Every data point is a node in a graph

John
John
John |
John Likes & Comments . ,
John’s o Jahn’s posts
friends




e Every data point is a node in a graph

John
John
John |
John Likes & Comments . ,
John’s o Jahn’s posts
friends




API| = Application Programming Interface
Easier for huge amounts of data

Twitter has multiple APls

So does Facebook

How to use the Graph API to post/delete a
status

You might want to ask your programmer for
help

@@




automatic content analysis

closed-vocabulary

crowdsourced
dictionaries

manual
dictionaries

manual
coding

derived
dictionaries

open-vocabulary

words &

topics phrases

o 0
person person " person person
community
country
*
535
0.0 0.1 0.2 0.3 0.4 0.5

Pearsonr

messages |

person

community



Individual Traits in Facebook

Test-Retest Reliability

2009 2010 2011

July-December |  January-June July-December January-June

— /\ o

L
\'63 '“/

.64

Extraversion




Individual Traits in Facebook
MyPersonality Dataset

e Facebook application to take “Big-5" personality survey.
e Approximately 75,000 users of the app:

o shared their status updates for research

o wrote at least 1,000 words

o share their age and gender

facebook.




Individual Traits in Facebook: Female
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Individual Traits in Facebook: Male
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